Social cheating in aPseudomonas aeruginosaquorum-sensing variant

Author:

Chen Ruiyi,Déziel EricORCID,Groleau Marie-Christine,Schaefer Amy L.,Greenberg E. PeterORCID

Abstract

The opportunistic bacterial pathogenPseudomonas aeruginosahas a layered acyl-homoserine lactone (AHL) quorum-sensing (QS) system, which controls production of a variety of extracellular metabolites and enzymes. The LasRI system activates genes including those coding for the extracellular protease elastase and for the second AHL QS system, RhlRI. Growth ofP. aeruginosaon casein requires elastase production and LasR-mutant social cheats emerge in populations growing on casein.P. aeruginosacolonizes the lungs of individuals with the genetic disease cystic fibrosis (CF), and LasR mutants can be isolated from the colonized lungs; however, unlike laboratory-generated LasR mutants, many of these CF isolates have functioning RhlR-RhlI systems. We show that one such mutant can use the RhlR-RhlI system to activate expression of elastase and grow on casein. We carried out social-evolution experiments by growing this isolate on caseinate and, as with wild-typeP. aeruginosa, elastase-negative mutants emerge as cheats, but these are not RhlR mutants; rather, they are mutants that do not produce the non-AHLPseudomonasquinolone signal (PQS). Furthermore, we generated a RhlRI mutant and showed it had a fitness defect when growing together with the parent. Apparently, RhlR QS and PQS collude to support growth on caseinate in the absence of a functional LasR. Our findings provide a plausible explanation as to whyP. aeruginosaLasR mutants, but not RhlR mutants, are common in CF lungs.

Funder

HHS | NIH | National Institute of General Medical Sciences

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Canada Institutes of Health

Innovative Team Program of Guangdong Government

China Scholarship Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3