Five-coordinate MnIV intermediate in the activation of nature’s water splitting cofactor

Author:

Chrysina Maria,Heyno Eiri,Kutin YuryORCID,Reus Michael,Nilsson Håkan,Nowaczyk Marc M.ORCID,DeBeer Serena,Neese Frank,Messinger Johannes,Lubitz WolfgangORCID,Cox Nicholas

Abstract

Nature’s water splitting cofactor passes through a series of catalytic intermediates (S0-S4) before O-O bond formation and O2 release. In the second last transition (S2 to S3) cofactor oxidation is coupled to water molecule binding to Mn1. It is this activated, water-enriched all MnIV form of the cofactor that goes on to form the O-O bond, after the next light-induced oxidation to S4. How cofactor activation proceeds remains an open question. Here, we report a so far not described intermediate (S3') in which cofactor oxidation has occurred without water insertion. This intermediate can be trapped in a significant fraction of centers (>50%) in (i) chemical-modified cofactors in which Ca2+ is exchanged with Sr2+; the Mn4O5Sr cofactor remains active, but the S2-S3 and S3-S0 transitions are slower than for the Mn4O5Ca cofactor; and (ii) upon addition of 3% vol/vol methanol; methanol is thought to act as a substrate water analog. The S3' electron paramagnetic resonance (EPR) signal is significantly broader than the untreated S3 signal (2.5 T vs. 1.5 T), indicating the cofactor still contains a 5-coordinate Mn ion, as seen in the preceding S2 state. Magnetic double resonance data extend these findings revealing the electronic connectivity of the S3' cofactor is similar to the high spin form of the preceding S2 state, which contains a cuboidal Mn3O4Ca unit tethered to an external, 5-coordinate Mn ion (Mn4). These results demonstrate that cofactor oxidation regulates water molecule insertion via binding to Mn4. The interaction of ammonia with the cofactor is also discussed.

Funder

Bundesministerium für Bildung und Forschung

Vetenskapsrådet

Australian Research Council

Max-Planck-Gesellschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3