Molecular mechanism of fusion pore formation driven by the neuronal SNARE complex

Author:

Sharma SatyanORCID,Lindau ManfredORCID

Abstract

Release of neurotransmitters from synaptic vesicles begins with a narrow fusion pore, the structure of which remains unresolved. To obtain a structural model of the fusion pore, we performed coarse-grained molecular dynamics simulations of fusion between a nanodisc and a planar bilayer bridged by four partially unzipped SNARE complexes. The simulations revealed that zipping of SNARE complexes pulls the polar C-terminal residues of the synaptobrevin 2 and syntaxin 1A transmembrane domains to form a hydrophilic core between the two distal leaflets, inducing fusion pore formation. The estimated conductances of these fusion pores are in good agreement with experimental values. Two SNARE protein mutants inhibiting fusion experimentally produced no fusion pore formation. In simulations in which the nanodisc was replaced by a 40-nm vesicle, an extended hemifusion diaphragm formed but a fusion pore did not, indicating that restricted SNARE mobility is required for rapid fusion pore formation. Accordingly, rapid fusion pore formation also occurred in the 40-nm vesicle system when SNARE mobility was restricted by external forces. Removal of the restriction is required for fusion pore expansion.

Funder

EC | FP7 | FP7 Ideas: European Research Council

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3