Author:
Lauro Federico M.,McDougald Diane,Thomas Torsten,Williams Timothy J.,Egan Suhelen,Rice Scott,DeMaere Matthew Z.,Ting Lily,Ertan Haluk,Johnson Justin,Ferriera Steven,Lapidus Alla,Anderson Iain,Kyrpides Nikos,Munk A. Christine,Detter Chris,Han Cliff S.,Brown Mark V.,Robb Frank T.,Kjelleberg Staffan,Cavicchioli Ricardo
Abstract
Many marine bacteria have evolved to grow optimally at either high (copiotrophic) or low (oligotrophic) nutrient concentrations, enabling different species to colonize distinct trophic habitats in the oceans. Here, we compare the genome sequences of two bacteria,Photobacterium angustumS14 andSphingopyxis alaskensisRB2256, that serve as useful model organisms for copiotrophic and oligotrophic modes of life and specifically relate the genomic features to trophic strategy for these organisms and define their molecular mechanisms of adaptation. We developed a model for predicting trophic lifestyle from genome sequence data and tested >400,000 proteins representing >500 million nucleotides of sequence data from 126 genome sequences with metagenome data of whole environmental samples. When applied to available oceanic metagenome data (e.g., the Global Ocean Survey data) the model demonstrated that oligotrophs, and not the more readily isolatable copiotrophs, dominate the ocean's free-living microbial populations. Using our model, it is now possible to define the types of bacteria that specific ocean niches are capable of sustaining.
Publisher
Proceedings of the National Academy of Sciences
Cited by
613 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献