Author:
Carbrey Jennifer M.,Song Linhua,Zhou Yao,Yoshinaga Masafumi,Rojek Aleksandra,Wang Yiding,Liu Yangjian,Lujan Heidi L.,DiCarlo Stephen E.,Nielsen Søren,Rosen Barry P.,Agre Peter,Mukhopadhyay Rita
Abstract
Expressed in liver, aquaglyceroporin-9 (AQP9) is permeated by glycerol, arsenite, and other small, neutral solutes. To evaluate a possible protective role, AQP9-null mice were evaluated for in vivo arsenic toxicity. After injection with NaAsO2, AQP9-null mice suffer reduced survival rates (LD50, 12 mg/kg) compared with WT mice (LD50, 15 mg/kg). The highest tissue level of arsenic is in heart, with AQP9-null mice accumulating 10–20 times more arsenic than WT mice. Within hours after NaAsO2injection, AQP9-null mice sustain profound bradycardia, despite normal serum electrolytes. Increased arsenic levels are also present in liver, lung, spleen, and testis of AQP9-null mice. Arsenic levels in the feces and urine of AQP9-null mice are only ≈10% of the WT levels, and reduced clearance of multiple arsenic species by the AQP9-null mice suggests that AQP9 is involved in the export of multiple forms of arsenic. Immunohistochemical staining of liver sections revealed that AQP9 is most abundant in basolateral membrane of hepatocytes adjacent to the sinusoids. AQP9 is not detected in heart or kidney by PCR or immunohistochemistry. We propose that AQP9 provides a route for excretion of arsenic by the liver, thereby providing partial protection of the whole animal from arsenic toxicity.
Publisher
Proceedings of the National Academy of Sciences
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献