Predicting plant vulnerability to drought in biodiverse regions using functional traits

Author:

Skelton Robert Paul,West Adam G.,Dawson Todd E.

Abstract

Attempts to understand mechanisms underlying plant mortality during drought have led to the emergence of a hydraulic framework describing distinct hydraulic strategies among coexisting species. This framework distinguishes species that rapidly decrease stomatal conductance (gs), thereby maintaining high water potential (Px; isohydric), from those species that maintain relatively high gs at low Px, thereby maintaining carbon assimilation, albeit at the cost of loss of hydraulic conductivity (anisohydric). This framework is yet to be tested in biodiverse communities, potentially due to a lack of standardized reference values upon which hydraulic strategies can be defined. We developed a system of quantifying hydraulic strategy using indices from vulnerability curves and stomatal dehydration response curves and tested it in a speciose community from South Africa’s Cape Floristic Region. Degree of stomatal regulation over cavitation was defined as the margin between Px at stomatal closure (Pg12) and Px at 50% loss of conductivity. To assess relationships between hydraulic strategy and mortality mechanisms, we developed proxies for carbon limitation and hydraulic failure using time since Pg12 and loss of conductivity at minimum seasonal Px, respectively. Our approach captured continuous variation along an isohydry/anisohydry axis and showed that this variation was linearly related to xylem safety margin. Degree of isohydry/anisohydry was associated with contrasting predictions for mortality during drought. Merging stomatal regulation strategies that represent an index of water use behavior with xylem vulnerability facilitates a more comprehensive framework with which to characterize plant response to drought, thus opening up an avenue for predicting the response of diverse communities to future droughts.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 265 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3