Resilient 3D hierarchical architected metamaterials

Author:

Meza Lucas R.,Zelhofer Alex J.,Clarke Nigel,Mateos Arturo J.,Kochmann Dennis M.,Greer Julia R.

Abstract

Hierarchically designed structures with architectural features that span across multiple length scales are found in numerous hard biomaterials, like bone, wood, and glass sponge skeletons, as well as manmade structures, like the Eiffel Tower. It has been hypothesized that their mechanical robustness and damage tolerance stem from sophisticated ordering within the constituents, but the specific role of hierarchy remains to be fully described and understood. We apply the principles of hierarchical design to create structural metamaterials from three material systems: (i) polymer, (ii) hollow ceramic, and (iii) ceramic–polymer composites that are patterned into self-similar unit cells in a fractal-like geometry. In situ nanomechanical experiments revealed (i) a nearly theoretical scaling of structural strength and stiffness with relative density, which outperforms existing nonhierarchical nanolattices; (ii) recoverability, with hollow alumina samples recovering up to 98% of their original height after compression to ≥50% strain; (iii) suppression of brittle failure and structural instabilities in hollow ceramic hierarchical nanolattices; and (iv) a range of deformation mechanisms that can be tuned by changing the slenderness ratios of the beams. Additional levels of hierarchy beyond a second order did not increase the strength or stiffness, which suggests the existence of an optimal degree of hierarchy to amplify resilience. We developed a computational model that captures local stress distributions within the nanolattices under compression and explains some of the underlying deformation mechanisms as well as validates the measured effective stiffness to be interpreted as a metamaterial property.

Funder

DOD | Defense Advanced Research Projects Agency

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 535 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3