Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice

Author:

Yamaji Naoki,Sakurai Gen,Mitani-Ueno Namiki,Ma Jian Feng

Abstract

Requirement of mineral elements in different plant tissues is not often consistent with their transpiration rate; therefore, plants have developed systems for preferential distribution of mineral elements to the developing tissues with low transpiration. Here we took silicon (Si) as an example and revealed an efficient system for preferential distribution of Si in the node of rice (Oryza sativa). Rice is able to accumulate more than 10% Si of the dry weight in the husk, which is required for protecting the grains from water loss and pathogen infection. However, it has been unknown for a long time how this hyperaccumulation is achieved. We found that three transporters (Lsi2, Lsi3, and Lsi6) located at the node are involved in the intervascular transfer, which is required for the preferential distribution of Si. Lsi2 was polarly localized to the bundle sheath cell layer around the enlarged vascular bundles, which is next to the xylem transfer cell layer where Lsi6 is localized. Lsi3 was located in the parenchyma tissues between enlarged vascular bundles and diffuse vascular bundles. Similar to Lsi6, knockout of Lsi2 and Lsi3 also resulted in decreased distribution of Si to the panicles but increased Si to the flag leaf. Furthermore, we constructed a mathematical model for Si distribution and revealed that in addition to cooperation of three transporters, an apoplastic barrier localized at the bundle sheath cells and development of the enlarged vascular bundles in node are also required for the hyperaccumulation of Si in rice husk.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference27 articles.

1. Marschner P (2011) Mineral Nutrition of Higher Plants (Academic, London), 3rd Ed

2. The node, a hub for mineral nutrient distribution in graminaceous plants

3. Hoshikawa K (1989) The Growing Rice Plant: An Anatomical Monograph (Nobunkyo, Tokyo)

4. Studies on Morphogenesis in Rice Plants : 7. The morphology of vascular bundles in the vegetative nodes of the culm

5. Ultrastructure of elliptical and diffuse bundles in the vegetative nodes of rice.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3