Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones

Author:

Ehrhard P B,Erb P,Graumann U,Otten U

Abstract

Recent evidence suggests that nerve growth factor (NGF), in addition to its neurotrophic functions, acts as an immunomodulator mediating "cross-talk" between neuronal and immune cells, including T lymphocytes. We have analyzed murine CD4+ T-cell clones for their ability to express transcripts encoding NGF, low-affinity NGF receptor, and trk protooncogene, the signal-transducing receptor subunit for NGF. We show that two CD4+ T-helper (Th) clones, Th0-type clone 8/37 and Th2-type clone D10.G4.1, express NGF and Trk mRNA after appropriate activation with mitogen or with antigen and antigen-presenting cells. NGF and trk induction occurred to a similar extent and over a similar time course in activated 8/37 T cells, raising the possibility that NGF and trk genes are under coordinate control. NGF and NGF receptor expression does not seem to be a universal property of all activated CD4+ T cells, since Th1-type clone 9/9 did not express any of the transcripts after either stimulation. The absence of low-affinity NGF receptor mRNA in resting and activated T cells implies that the low-affinity NGF receptor is not involved in NGF signal transduction in CD4+ T cells. Our finding that activated CD4+ T-cell clones not only express Trk but also synthesize and release biologically active NGF implicates NGF as an autocrine and/or paracrine factor in the development and regulation of immune responses.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 276 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nerve Growth Factor and Autoimmune Diseases;Current Issues in Molecular Biology;2023-11-10

2. Nerve Growth Factor in Psychiatric Disorders: A Scoping Review;Indian Journal of Psychological Medicine;2023-04-20

3. Cenegermin for the treatment of dry eye disease;Drugs of Today;2023-03

4. Nervous System-Driven Osseointegration;International Journal of Molecular Sciences;2022-08-10

5. A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable;Cells;2022-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3