Planet-compatible pathways for transitioning the chemical industry

Author:

Meng Fanran1ORCID,Wagner Andreas2,Kremer Alexandre B.2,Kanazawa Daisuke3,Leung Jane J.2,Goult Peter2,Guan Min2,Herrmann Sophie2,Speelman Eveline2,Sauter Pim2ORCID,Lingeswaran Shajeeshan2,Stuchtey Martin M.24,Hansen Katja5ORCID,Masanet Eric67,Serrenho André C.1,Ishii Naoko3,Kikuchi Yasunori89,Cullen Jonathan M.1

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

2. Systemiq, London EC4V 5EQ, UK

3. Center for Global Commons, Institute for Future Initiatives, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan

4. Faculty of Business and Management, Innsbruck University, Innsbruck 6020, Austria

5. Institute of Energy Efficient and Sustainable Design and Building, Technical University ounich 80333, München, Germany

6. Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93117

7. Department of Mechanical Engineering, University of California, Santa Barbara, CA 93117

8. Department of Chemical System Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

9. Institute for Future Initiatives, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan

Abstract

Chemical products, such as plastics, solvents, and fertilizers, are essential for supporting modern lifestyles. Yet, producing, using, and disposing of chemicals creates adverse environmental impacts which threaten the industry’s license to operate. This study presents seven planet-compatible pathways toward 2050 employing demand-side and supply-side interventions with cumulative total investment costs of US$1.2–3.7 trillion. Resource efficiency and circularity interventions reduce global chemicals demand by 23 to 33% and are critical for mitigating risks associated with using fossil feedstocks and carbon capture and sequestration, and constraints on available biogenic and recyclate feedstocks. Replacing fossil feedstocks with biogenic/air-capture sources, shifting carbon destinations from the atmosphere to ground, and electrifying/decarbonizing energy supply for production technologies could enable net negative emissions of 0.5 GtCO 2eq y −1 across non-ammonia chemicals, while still delivering essential chemical-based services to society.

Funder

Mitsubishi Chemical Corporation

University of Tokyo

C-THRU

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference48 articles.

1. International Energy Agency “The future of petrochemicals–Towards more sustainable plastics and fertilisers” (International Energy Agency Paris France 2018) pp. 1–132.

2. Mapping global flows of chemicals: From fossil fuel feedstocks to chemical products;Levi P. G.;Environ. Sci. Technol.,2018

3. Oxford Economics “The global chemical industry: Catalyzing growth and addressing our World’s sustainability challenges” (Oxford Economics Washington DC 2019) (6 May 2022).

4. UNEP “Chemicals and waste” (UNEP 2017) (1 December 2022).

5. International Energy Agency (IEA) “Ammonia technology roadmap towards more sustainable nitrogen fertiliser production” (IEA Paris France 2021) (21 October 2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3