Nanotopography modulates intracellular excitable systems through cytoskeleton actuation

Author:

Yang Qixin12,Miao Yuchuan3,Banerjee Parijat4,Hourwitz Matt J.5,Hu Minxi6,Qing Quan78ORCID,Iglesias Pablo A.39ORCID,Fourkas John T.25ORCID,Losert Wolfgang12ORCID,Devreotes Peter N.3ORCID

Affiliation:

1. Department of Physics, University of Maryland, College Park, MD 20742

2. Institute of Physical Science and Technology, University of Maryland, College Park, MD 20742

3. Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205

4. Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218

5. Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742

6. School of Molecular Sciences, Arizona State University, Tempe, AZ 85287

7. Department of Physics, Arizona State University, Tempe, AZ 85287

8. Biodesign Institute, Arizona State University, Tempe, AZ 85287

9. Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD 21218

Abstract

Cellular sensing of most environmental cues involves receptors that affect a signal-transduction excitable network (STEN), which is coupled to a cytoskeletal excitable network (CEN). We show that the mechanism of sensing of nanoridges is fundamentally different. CEN activity occurs preferentially on nanoridges, whereas STEN activity is constrained between nanoridges. In the absence of STEN, waves disappear, but long-lasting F-actin puncta persist along the ridges. When CEN is suppressed, wave propagation is no longer constrained by nanoridges. A computational model reproduces these experimental observations. Our findings indicate that nanotopography is sensed directly by CEN, whereas STEN is only indirectly affected due to a CEN-STEN feedback loop. These results explain why texture sensing is robust and acts cooperatively with multiple other guidance cues in complex, in vivo microenvironments.

Funder

US | USAF | AMC | Air Force Office of Scientific Research

HHS | NIH | Center for Scientific Review

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3