Genome-wide maps of rare and atypical UV photoproducts reveal distinct patterns of damage formation and mutagenesis in yeast chromatin

Author:

Bohm Kaitlynne A.1ORCID,Morledge-Hampton Benjamin1,Stevison Scott1,Mao Peng2,Roberts Steven A.13ORCID,Wyrick John J.1

Affiliation:

1. School of Molecular Biosciences, Washington State University, Pullman, WA 99164

2. Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131

3. Center for Reproductive Biology, Washington State University, Pullman, WA 99164

Abstract

Ultraviolet (UV) light induces different classes of mutagenic photoproducts in DNA, namely cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and atypical thymine–adenine photoproducts (TA-PPs). CPD formation is modulated by nucleosomes and transcription factors (TFs), which has important ramifications for Ultraviolet (UV) mutagenesis. How chromatin affects the formation of 6-4PPs and TA-PPs is unclear. Here, we use UV damage endonuclease-sequencing (UVDE-seq) to map these UV photoproducts across the yeast genome. Our results indicate that nucleosomes, the fundamental building block of chromatin, have opposing effects on photoproduct formation. Nucleosomes induce CPDs and 6-4PPs at outward rotational settings in nucleosomal DNA but suppress TA-PPs at these settings. Our data also indicate that DNA binding by different classes of yeast TFs causes lesion-specific hotspots of 6-4PPs or TA-PPs. For example, DNA binding by the TF Rap1 generally suppresses CPD and 6-4PP formation but induces a TA-PP hotspot. Finally, we show that 6-4PP formation is strongly induced at the binding sites of TATA-binding protein (TBP), which is correlated with higher mutation rates in UV-exposed yeast. These results indicate that the formation of 6-4PPs and TA-PPs is modulated by chromatin differently than CPDs and that this may have important implications for UV mutagenesis.

Funder

HHS | NIH | National Institute of Environmental Health Sciences

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3