Pressure pushes tRNA Lys3 into excited conformational states

Author:

Wang Jinqiu1ORCID,Koduru Tejaswi2ORCID,Harish Balasubramanian2,McCallum Scott A.3ORCID,Larsen Kevin P.4ORCID,Patel Karishma S.4ORCID,Peters Edgar V.5,Gillilan Richard E.6ORCID,Puglisi Elisabetta V.4,Puglisi Joseph D.4,Makhatadze George2ORCID,Royer Catherine A.2ORCID

Affiliation:

1. Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY 12180

2. Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180

3. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180

4. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305

5. Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180

6. Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853

Abstract

Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNA Lys3 , and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U–A and G–C base pairs of tRNA Lys3 . HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.

Funder

National Science Foundation

HHS | NIH | Office of Extramural Research, National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3