Ape malaria transmission and potential for ape-to-human transfers in Africa

Author:

Makanga Boris,Yangari Patrick,Rahola Nil,Rougeron Virginie,Elguero Eric,Boundenga Larson,Moukodoum Nancy Diamella,Okouga Alain Prince,Arnathau Céline,Durand Patrick,Willaume Eric,Ayala Diego,Fontenille Didier,Ayala Francisco J.,Renaud François,Ollomo Benjamin,Prugnolle Franck,Paupy Christophe

Abstract

Recent studies have highlighted the large diversity of malaria parasites infecting African great apes (subgenus Laverania) and their strong host specificity. Although the existence of genetic incompatibilities preventing the cross-species transfer may explain host specificity, the existence of vectors with a high preference for a determined host represents another possibility. To test this hypothesis, we undertook a 15-mo-long longitudinal entomological survey in two forest regions of Gabon, where wild apes live, at different heights under the canopy. More than 2,400 anopheline mosquitoes belonging to 18 species were collected. Among them, only three species of Anopheles were found infected with ape Plasmodium: Anopheles vinckei, Anopheles moucheti, and Anopheles marshallii. Their role in transmission was confirmed by the detection of the parasites in their salivary glands. Among these species, An. vinckei showed significantly the highest prevalence of infection and was shown to be able to transmit parasites of both chimpanzees and gorillas. Transmission was also shown to be conditioned by seasonal factors and by the heights of capture under the canopy. Moreover, human landing catches of sylvan Anopheles demonstrated the propensity of these three vector species to feed on humans when available. Our results suggest therefore that the strong host specificity observed in the Laveranias is not linked to a specific association between the vertebrate host and the vector species and highlight the potential role of these vectors as bridge between apes and humans.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3