Author:
Braunstein Alfredo,Dall’Asta Luca,Semerjian Guilhem,Zdeborová Lenka
Abstract
We study the network dismantling problem, which consists of determining a minimal set of vertices in which removal leaves the network broken into connected components of subextensive size. For a large class of random graphs, this problem is tightly connected to the decycling problem (the removal of vertices, leaving the graph acyclic). Exploiting this connection and recent works on epidemic spreading, we present precise predictions for the minimal size of a dismantling set in a large random graph with a prescribed (light-tailed) degree distribution. Building on the statistical mechanics perspective, we propose a three-stage Min-Sum algorithm for efficiently dismantling networks, including heavy-tailed ones for which the dismantling and decycling problems are not equivalent. We also provide additional insights into the dismantling problem, concluding that it is an intrinsically collective problem and that optimal dismantling sets cannot be viewed as a collection of individually well-performing nodes.
Funder
EC | European Research Council
Fondazione CRT
Publisher
Proceedings of the National Academy of Sciences
Cited by
188 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献