Inverse regulation of SOS1 and HKT1 protein localization and stability by SOS3/CBL4 in Arabidopsis thaliana

Author:

Gámez-Arjona Francisco12ORCID,Park Hee Jin34ORCID,García Elena1,Aman Rashid5ORCID,Villalta Irene6ORCID,Raddatz Natalia1,Carranco Raul1ORCID,Ali Akhtar3ORCID,Ali Zahir5ORCID,Zareen Shah3ORCID,De Luca Anna1,Leidi Eduardo O.7ORCID,Daniel-Mozo Miguel8,Xu Zheng-Yi9,Albert Armando8ORCID,Kim Woe-Yeon10ORCID,Pardo Jose M.1ORCID,Sánchez-Rodriguez Clara211ORCID,Yun Dae-Jin3ORCID,Quintero Francisco J.1ORCID

Affiliation:

1. Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain

2. Department of Biology, ETH Zurich, Zurich 8092, Switzerland

3. Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea

4. Department of Biological Sciences, Chonnam National University, Gwangju 61186, Korea

5. Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

6. Institut de Recherche sur la Biologie de l’Insecte, Université de Tours, Tours 37200, France

7. Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Cientificas, Seville 41012, Spain

8. Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain

9. Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun 130024, China

10. Division of Applied Life Science (BK21 Program), Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea

11. Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC), Pozuelo de Alarcón 28223, Spain

Abstract

To control net sodium (Na + ) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na + /H + antiporter SOS1 to achieve Na + efflux at the root and Na + loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na + unloading off the xylem. Together, these opposing transport systems govern the partition of Na + within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na + fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na + export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na + transport systems operating in vascular plants controlling plant tolerance to salinity.

Funder

MEC | Agencia Estatal de Investigación

National Research Foundation of Korea

ETH Zürich Foundation

Ministry of Science and ICT, South Korea

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3