Boom-bust population dynamics drive rapid genetic change

Author:

Stringer Emily J.1ORCID,Gruber Bernd1,Sarre Stephen D.1ORCID,Wardle Glenda M.2ORCID,Edwards Scott V.3ORCID,Dickman Christopher R.2ORCID,Greenville Aaron C.2,Duncan Richard P.1ORCID

Affiliation:

1. Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra ACT 2617, Australia

2. Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia

3. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

Abstract

Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia’s arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse ( Pseudomys hermannsburgensis ) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation ( F ST ) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart ( Sminthopsis youngsoni ), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.

Funder

Australian Research Council

Research Training Program, University of Canberra

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3