Deepfake detection by human crowds, machines, and machine-informed crowds

Author:

Groh MatthewORCID,Epstein ZivORCID,Firestone ChazORCID,Picard Rosalind

Abstract

The recent emergence of machine-manipulated media raises an important societal question: How can we know whether a video that we watch is real or fake? In two online studies with 15,016 participants, we present authentic videos and deepfakes and ask participants to identify which is which. We compare the performance of ordinary human observers with the leading computer vision deepfake detection model and find them similarly accurate, while making different kinds of mistakes. Together, participants with access to the model’s prediction are more accurate than either alone, but inaccurate model predictions often decrease participants’ accuracy. To probe the relative strengths and weaknesses of humans and machines as detectors of deepfakes, we examine human and machine performance across video-level features, and we evaluate the impact of preregistered randomized interventions on deepfake detection. We find that manipulations designed to disrupt visual processing of faces hinder human participants’ performance while mostly not affecting the model’s performance, suggesting a role for specialized cognitive capacities in explaining human deepfake detection performance.

Funder

MIT Media Lab member companies

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference90 articles.

1. The science of fake news

2. Deep fakes: A looming challenge for privacy, democracy, and national security;Chesney;Calif. Law Rev.,2019

3. B. Paris , J. Donovan , Deepfakes and cheapfakes: The manipulation of audio and visual evidence. Data and Society, 18 September 2019. https://datasociety.net/wp-content/uploads/2019/09/DS_Deepfakes_Cheap_FakesFinal.pdf. Accessed 15 May 2021.

4. C. Leibowicz , S. McGregor , A. Ovadya , The deepfake detection dilemma: A multistakeholder exploration of adversarial dynamics in synthetic media. arXiv [Preprint] (2021). https://arxiv.org/abs/2012.06109 (Accessed 15 May 2021).

5. Mastering the game of Go with deep neural networks and tree search

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3