Abstract
Wind-generated waves are dominant drivers of coastal dynamics and vulnerability, which have considerable impacts on littoral ecosystems and socioeconomic activities. It is therefore paramount to improve coastal hazards predictions through the better understanding of connections between wave activity and climate variability. In the Pacific, the dominant climate mode is El Niño Southern Oscillation (ENSO), which has known a renaissance of scientific interest leading to great theoretical advances in the past decade. Yet studies on ENSO’s coastal impacts still rely on the oversimplified picture of the canonical dipole across the Pacific. Here, we consider the full ENSO variety to delineate its essential teleconnection pathways to tropical and extratropical storminess. These robust seasonally modulated relationships allow us to develop a mathematical model of coastal wave modulation essentially driven by ENSO’s complex temporal and spatial behavior. Accounting for this nonlinear climate control on Pan-Pacific wave activity leads to a much better characterization of waves’ seasonal to interannual variability (+25% in explained variance) and intensity of extremes (+60% for strong ENSO events), therefore paving the way for significantly more accurate forecasts than formerly possible with the previous baseline understanding of ENSO’s influence on coastal hazards.
Funder
Agence Nationale de la Recherche
NSF | Directorate for Geosciences
DOE | SC | Basic Energy Sciences
Publisher
Proceedings of the National Academy of Sciences
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献