Rapid cloud removal of dimethyl sulfide oxidation products limits SO2 and cloud condensation nuclei production in the marine atmosphere

Author:

Novak Gordon A.ORCID,Fite Charles H.ORCID,Holmes Christopher D.ORCID,Veres Patrick R.ORCID,Neuman J. AndrewORCID,Faloona IanORCID,Thornton Joel A.ORCID,Wolfe Glenn M.ORCID,Vermeuel Michael P.ORCID,Jernigan Christopher M.ORCID,Peischl JeffORCID,Ryerson Thomas B.,Thompson Chelsea R.,Bourgeois IlannORCID,Warneke CarstenORCID,Gkatzelis Georgios I.ORCID,Coggon Mathew M.ORCID,Sekimoto Kanako,Bui T. Paul,Dean-Day JonathanORCID,Diskin Glenn S.ORCID,DiGangi Joshua P.ORCID,Nowak John B.ORCID,Moore Richard H.ORCID,Wiggins Elizabeth B.,Winstead Edward L.,Robinson Claire,Thornhill K. Lee,Sanchez Kevin J.ORCID,Hall Samuel R.ORCID,Ullmann KirkORCID,Dollner MaximilianORCID,Weinzierl BernadettORCID,Blake Donald R.,Bertram Timothy H.ORCID

Abstract

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth’s radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO2) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime (τHPMTF < 2 h) and terminates DMS oxidation to SO2. When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.

Funder

National Science Foundation

National Science Foundation Center for Aerosol Impacts on Chemistry of the Environment

NASA FINESST

NASA New Investigator Program

European Research Council

USDA NIFA

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3