Affiliation:
1. Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
2. Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
Abstract
Significance
Enzyme bioelectrochemistry concerns the integration of oxidoreductase enzymes into electrodes to enable and study the transfer of electrons between the solid-state material surface and the biological catalyst. To achieve higher enzyme loading, and hence greater current densities, high-surface-area strategies have been employed to immobilize enzymes, but these porous electrode architectures amplify the formation of local chemical gradients. Enzyme selectivity and activity is highly dependent on such changes in local environment, such as substrate concentration, pH, and electrolyte species concentration. Here, electrochemistry and computational techniques are applied to explore, and hence optimize, the local environment of the fuel-producing oxidoreductases, hydrogenase and formate dehydrogenase, within porous electrodes.
Publisher
Proceedings of the National Academy of Sciences
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献