Tmem45b is essential for inflammation- and tissue injury–induced mechanical pain hypersensitivity

Author:

Tanioku Tadashi1,Nishibata Masayuki1ORCID,Tokinaga Yasuyuki1ORCID,Konno Kohtaro2,Watanabe Masahiko2ORCID,Hemmi Hiroaki3,Fukuda-Ohta Yuri3,Kaisho Tsuneyasu3ORCID,Furue Hidemasa4ORCID,Kawamata Tomoyuki1ORCID

Affiliation:

1. Department of Anesthesiology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan

2. Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 063-8638, Japan

3. Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan

4. Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan

Abstract

Persistent mechanical pain hypersensitivity associated with peripheral inflammation, surgery, trauma, and nerve injury impairs patients’ quality of life and daily activity. However, the molecular mechanism and treatment are not yet fully understood. Herein, we show that chemical ablation of isolectin B4-binding (IB4 + ) afferents by IB4–saporin injection into sciatic nerves completely and selectively inhibited inflammation- and tissue injury–induced mechanical pain hypersensitivity while thermal and mechanical pain hypersensitivities were normal following nerve injury. To determine the molecular mechanism involving the specific types of mechanical pain hypersensitivity, we compared gene expression profiles between IB4 + neuron-ablated and control dorsal root ganglion (DRG) neurons. We identified Tmem45b as one of 12 candidate genes that were specific to somatosensory ganglia and down-regulated by IB4 + neuronal ablation. Indeed, Tmem45b was expressed predominantly in IB4 + DRG neurons, where it was selectively localized in the trans Golgi apparatus of DRG neurons but not detectable in the peripheral and central branches of DRG axons. Tmem45b expression was barely detected in the spinal cord and brain. Although Tmem45b-knockout mice showed normal responses to noxious heat and noxious mechanical stimuli under normal conditions, mechanical pain hypersensitivity was selectively impaired after inflammation and tissue incision, reproducing the pain phenotype of IB4 + sensory neuron-ablated mice. Furthermore, acute knockdown by intrathecal injection of Tmem45b small interfering RNA, either before or after inflammation induction, successfully reduced mechanical pain hypersensitivity. Thus, our study demonstrates that Tmem45b is essential for inflammation- and tissue injury–induced mechanical pain hypersensitivity and highlights Tmem45b as a therapeutic target for future treatment.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3