Electron transport through two interacting channels in Azurin-based solid-state junctions

Author:

Li Ping’an1,Bera Sudipta2ORCID,Kumar-Saxena Shailendra3,Pecht Israel4ORCID,Sheves Mordechai2ORCID,Cahen David2ORCID,Selzer Yoram1ORCID

Affiliation:

1. Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

2. Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel

3. Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India

4. Department of Regenerative Biology and Immunology, Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

The fundamental question of “what is the transport path of electrons through proteins?” initially introduced while studying long-range electron transfer between localized redox centers in proteins in vivo is also highly relevant to the transport properties of solid-state, dry metal–protein–metal junctions. Here, we report conductance measurements of such junctions, Au-( Azurin monolayer ensemble)-Bismuth (Bi) ones, with well-defined nanopore geometry and ~10 3 proteins/pore. Our results can be understood as follows. (1) Transport is via two interacting conducting channels, characterized by different spatial and time scales. The slow and spatially localized channel is associated with the Cu center of Azurin and the fast delocalized one with the protein’s polypeptide matrix. Transport via the slow channel is by a sequential (noncoherent) process and in the second one by direct, off-resonant tunneling. (2) The two channels are capacitively coupled. Thus, with a change in charge occupation of the weakly coupled (metal center) channel, the broad energy level manifold, responsible for off-resonance tunneling, shifts, relative to the electrodes’ Fermi levels. In this process, the off-resonance (fast) channel dominates transport, and the slow (redox) channel, while contributing only negligibly directly, significantly affects transport by intramolecular gating.

Funder

Israel Science Foundation

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3