Disorder-to-order active site capping regulates the rate-limiting step of the inositol pathway

Author:

Träger Toni K.12ORCID,Kyrilis Fotis L.3ORCID,Hamdi Farzad124ORCID,Tüting Christian124ORCID,Alfes Marie45ORCID,Hofmann Tommy46ORCID,Schmidt Carla147ORCID,Kastritis Panagiotis L.1234ORCID

Affiliation:

1. Faculty of Natural Sciences I, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale 06120, Germany

2. Biozentrum, Martin Luther University Halle-Wittenberg, Halle/Saale 06120, Germany

3. Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece

4. Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale 06120, Germany

5. Biologics Analytical R&D, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany

6. Impfstoffwerk Dessau-Tornau Biologika, Dessau-Roßlau 06861, Germany

7. Department of Chemistry–Biochemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany

Abstract

Myo-inositol-1-phosphate synthase (MIPS) catalyzes the NAD + -dependent isomerization of glucose-6-phosphate (G6P) into inositol-1-phosphate (IMP), controlling the rate-limiting step of the inositol pathway. Previous structural studies focused on the detailed molecular mechanism, neglecting large-scale conformational changes that drive the function of this 240 kDa homotetrameric complex. In this study, we identified the active, endogenous MIPS in cell extracts from the thermophilic fungus Thermochaetoides thermophila . By resolving the native structure at 2.48 Å (FSC = 0.143), we revealed a fully populated active site. Utilizing 3D variability analysis, we uncovered conformational states of MIPS, enabling us to directly visualize an order-to-disorder transition at its catalytic center. An acyclic intermediate of G6P occupied the active site in two out of the three conformational states, indicating a catalytic mechanism where electrostatic stabilization of high-energy intermediates plays a crucial role. Examination of all isomerases with known structures revealed similar fluctuations in secondary structure within their active sites. Based on these findings, we established a conformational selection model that governs substrate binding and eventually inositol availability. In particular, the ground state of MIPS demonstrates structural configurations regardless of substrate binding, a pattern observed across various isomerases. These findings contribute to the understanding of MIPS structure-based function, serving as a template for future studies targeting regulation and potential therapeutic applications.

Funder

Bundesministerium für Bildung und Forschung

EC | Horizon Europe | WPSERA | HORIZON EUROPE Widening participation and spreading excellence

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3