Atomic resolution map of the solvent interactions driving SOD1 unfolding in CAPRIN1 condensates

Author:

Ahmed Rashik1234,Liang Mingyang3ORCID,Hudson Rhea P.4ORCID,Rangadurai Atul K.1234,Huang Shuya Kate1234,Forman-Kay Julie D.34ORCID,Kay Lewis E.1234ORCID

Affiliation:

1. Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada

2. Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada

3. Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada

4. Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada

Abstract

Biomolecules can be sequestered into membrane-less compartments, referred to as biomolecular condensates. Experimental and computational methods have helped define the physical-chemical properties of condensates. Less is known about how the high macromolecule concentrations in condensed phases contribute “solvent” interactions that can remodel the free-energy landscape of other condensate-resident proteins, altering thermally accessible conformations and, in turn, modulating function. Here, we use solution NMR spectroscopy to obtain atomic resolution insights into the interactions between the immature form of superoxide dismutase 1 (SOD1), which can mislocalize and aggregate in stress granules, and the RNA-binding protein CAPRIN1, a component of stress granules. NMR studies of CAPRIN1:SOD1 interactions, focused on both unfolded and folded SOD1 states in mixed phase and demixed CAPRIN1-based condensates, establish that CAPRIN1 shifts the SOD1 folding equilibrium toward the unfolded state through preferential interactions with the unfolded ensemble, with little change to the structure of the folded conformation. Key contacts between CAPRIN1 and the H80-H120 region of unfolded SOD1 are identified, as well as SOD1 interaction sites near both the arginine-rich and aromatic-rich regions of CAPRIN1. Unfolding of immature SOD1 in the CAPRIN1 condensed phase is shown to be coupled to aggregation, while a more stable zinc-bound, dimeric form of SOD1 is less susceptible to unfolding when solvated by CAPRIN1. Our work underscores the impact of the condensate solvent environment on the conformational states of resident proteins and supports the hypothesis that ALS mutations that decrease metal binding or dimerization function as drivers of aggregation in condensates.

Funder

Canadian Government | Canadian Institutes of Health Research

Canadian Government | Natural Sciences and Engineering Research Council of Canada

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3