General theory for localizing the where and when of entropy production meets single-molecule experiments

Author:

Degünther Julius1ORCID,van der Meer Jann1ORCID,Seifert Udo1

Affiliation:

1. II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart 70550, Germany

Abstract

The laws of thermodynamics apply to biophysical systems on the nanoscale as described by the framework of stochastic thermodynamics. This theory provides universal, exact relations for quantities like work, which have been verified in experiments where a fully resolved description allows direct access to such quantities. Complementary studies consider partially hidden, coarse-grained descriptions, in which the mean entropy production typically is not directly accessible but can be bounded in terms of observable quantities. Going beyond the mean, we introduce a fluctuating entropy production that applies to individual trajectories in a coarse-grained description under time-dependent driving. Thus, this concept is applicable to the broad and experimentally significant class of driven systems in which not all relevant states can be resolved. We provide a paradigmatic example by studying an experimentally verified protein unfolding process. As a consequence, the entire distribution of the coarse-grained entropy production rather than merely its mean retains spatial and temporal information about the microscopic process. In particular, we obtain a bound on the distribution of the physical entropy production of individual unfolding events.

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3