Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression

Author:

Deng Liang1,Zhao Zhihu2ORCID,Liu Lin3,Zhong Zhiyu1,Xie Wenxinyu1,Zhou Fan3,Xu Wei1,Zhang Yubo4,Deng Zixin1ORCID,Sun Yuhui1ORCID

Affiliation:

1. Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430071, China

2. Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing 100071, China

3. Epigenetic Division, Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan 430075, China

4. Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

Abstract

The soil-dwelling filamentous bacteria, Streptomyces, is widely known for its ability to produce numerous bioactive natural products. Despite many efforts toward their overproduction and reconstitution, our limited understanding of the relationship between the host’s chromosome three dimension (3D) structure and the yield of the natural products escaped notice. Here, we report the 3D chromosome organization and its dynamics of the model strain, Streptomyces coelicolor , during the different growth phases. The chromosome undergoes a dramatic global structural change from primary to secondary metabolism, while some biosynthetic gene clusters (BGCs) form special local structures when highly expressed. Strikingly, transcription levels of endogenous genes are found to be highly correlated to the local chromosomal interaction frequency as defined by the value of the frequently interacting regions (FIREs). Following the criterion, an exogenous single reporter gene and even complex BGC can achieve a higher expression after being integrated into the chosen loci, which may represent a unique strategy to activate or enhance the production of natural products based on the local chromosomal 3D organization.

Funder

The National Key R&D Program of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3