Genomic and geographical structure of human cytomegalovirus

Author:

Charles Oscar J.1ORCID,Venturini Cristina1ORCID,Gantt Soren2ORCID,Atkinson Claire3,Griffiths Paul3ORCID,Goldstein Richard A.4ORCID,Breuer Judith15ORCID

Affiliation:

1. Department of Infection, Immunity and Inflammation, University College London, Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom

2. Research Centre of the Sainte-Justine University Hospital and Department of Microbiology, Infectious Diseases and Immunology, University of Montréal, Montréal, Quebec H3T 1C5, Canada

3. Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London NW3 2PP, United Kingdom

4. Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom

5. Great Ormond Street Hospital for Children National Health Service Foundation Trust, London WC1N 1LE, United Kingdom

Abstract

Human cytomegalovirus (CMV) has infected humans since the origin of our species and currently infects most of the world’s population. Variability between CMV genomes is the highest of any human herpesvirus, yet large portions of the genome are conserved. Here, we show that the genome encodes 74 regions of relatively high variability each with 2 to 8 alleles. We then identified two patterns in the CMV genome. Conserved parts of the genome and a minority (32) of variable regions show geographic population structure with evidence for African or European clustering, although hybrid strains are present. We find no evidence that geographic segregation has been driven by host immune pressure affecting known antigenic sites. Forty-two variable regions show no geographical structure, with similar allele distributions across different continental populations. These “nongeographical” regions are significantly enriched for genes encoding immunomodulatory functions suggesting a core functional importance. We hypothesize that at least two CMV founder populations account for the geographical differences that are largely seen in the conserved portions of the genome, although the timing of separation and direction of spread between the two are not clear. In contrast, the similar allele frequencies among 42 variable regions of the genome, irrespective of geographical origin, are indicative of a second evolutionary process, namely balancing selection that may preserve properties critical to CMV biological function. Given that genetic differences between CMVs are postulated to alter immunogenicity and potentially function, understanding these two evolutionary processes could contribute important information for the development of globally effective vaccines and the identification of novel drug targets.

Funder

UKRI | MRC | Medical Research Foundation

Wellcome Trust

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3