Mapping the intrinsic photocurrent streamlines through micromagnetic heterostructure devices

Author:

Mayes David12,Farahmand Farima12ORCID,Grossnickle Maxwell12,Lohmann Mark1,Aldosary Mohammed1ORCID,Li Junxue1,Aji Vivek1,Shi Jing1,Song Justin C. W.3ORCID,Gabor Nathaniel M.12ORCID

Affiliation:

1. Department of Physics and Astronomy, University of California, Riverside, CA 92521

2. Laboratory of Quantum Materials Optoelectronics, University of California, Riverside, CA 92521

3. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

Abstract

Photocurrent in quantum materials is often collected at global contacts far away from the initial photoexcitation. This collection process is highly nonlocal. It involves an intricate spatial pattern of photocurrent flow (streamlines) away from its primary photoexcitation that depends sensitively on the configuration of current collecting contacts as well as the spatial nonuniformity and tensor structure of conductivity. Direct imaging to track photocurrent streamlines is challenging. Here, we demonstrate a microscopy method to image photocurrent streamlines through ultrathin heterostructure devices comprising platinum on yttrium iron garnet (YIG). We accomplish this by combining scanning photovoltage microscopy with a uniform rotating magnetic field. Here, local photocurrent is generated through a photo-Nernst type effect with its direction controlled by the external magnetic field. This enables the mapping of photocurrent streamlines in a variety of geometries that include conventional Hall bar-type devices, but also unconventional wing-shaped devices called electrofoils. In these, we find that photocurrent streamlines display contortion, compression, and expansion behavior depending on the shape and angle of attack of the electrofoil devices, much in the same way as tracers in a wind tunnel map the flow of air around an aerodynamic airfoil. This affords a powerful tool to visualize and characterize charge flow in optoelectronic devices.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3