Local strain inhomogeneities during electrical triggering of a metal–insulator transition revealed by X-ray microscopy

Author:

Salev Pavel1ORCID,Kisiel Elliot23ORCID,Sasaki Dayne4ORCID,Gunn Brandon2,He Wei2,Feng Mingzhen4,Li Junjie2ORCID,Tamura Nobumichi5ORCID,Poudyal Ishwor3,Islam Zahirul3ORCID,Takamura Yayoi4ORCID,Frano Alex2ORCID,Schuller Ivan K.2ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Denver, Denver, CO 80210

2. Department of Physics, University of California San Diego, La Jolla, CA 92093

3. X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439

4. Department of Materials Science and Engineering, University of California Davis, Davis, CA 95616

5. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract

Electrical triggering of a metal–insulator transition (MIT) often results in the formation of characteristic spatial patterns such as a metallic filament percolating through an insulating matrix or an insulating barrier splitting a conducting matrix. When MIT triggering is driven by electrothermal effects, the temperature of the filament or barrier can be substantially higher than the rest of the material. Using X-ray microdiffraction and dark-field X-ray microscopy, we show that electrothermal MIT triggering leads to the development of an inhomogeneous strain profile across the switching device, even when the material does not undergo a pronounced, discontinuous structural transition coinciding with the MIT. Diffraction measurements further reveal evidence of unique features associated with MIT triggering including lattice distortions, tilting, and twinning, which indicate structural nonuniformity of both low- and high-resistance regions inside the switching device. Such lattice deformations do not occur under equilibrium, zero-voltage conditions, highlighting the qualitative difference between states achieved through increasing temperature and applying voltage in nonlinear electrothermal materials. Electrically induced strain, lattice distortions, and twinning could have important contributions in the MIT triggering process and drive the material into nonequilibrium states, providing an unconventional pathway to explore the phase space in strongly correlated electronic systems.

Funder

DOE | Office of Science

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3