Disconnection flow–mediated grain rotation

Author:

Qiu Caihao1ORCID,Salvalaglio Marco23ORCID,Srolovitz David J.4ORCID,Han Jian1ORCID

Affiliation:

1. Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, China

2. Institute of Scientific Computing, Technische Universität Dresden, Dresden 01062, Germany

3. Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany

4. Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China

Abstract

Grain rotation is commonly observed during the evolution of microstructures in polycrystalline materials of different kinds, including metals, ceramics, and colloidal crystals. It is widely accepted that interface migration in these systems is mediated by the motion of line defects with step and dislocation character, i.e., disconnections. We propose a crystallography-respecting continuum model for arbitrarily curved grain boundaries or heterophase interfaces, accounting for the disconnections’ role in grain rotation. Numerical simulations demonstrate that changes in grain orientations, as well as interface morphology and internal stress field, are associated with disconnection flow. Our predictions agree with molecular dynamics simulation results for pure capillarity-driven evolution of grain boundaries and are interpreted through an extended Cahn–Taylor model.

Funder

City University of Hong Kong

Research Grants Council, University Grants Committee

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference69 articles.

1. Grains, phases, and interfaces: An introduction of microstructure;Smith C. S.;Trans. Metall. Soc. AIME,1948

2. J. Von Neumann, Metal Interfaces (American Society Metals, Cleveland) (1952), p. 108.

3. Recrystallization and grain growth

4. The von Neumann relation generalized to coarsening of three-dimensional microstructures

5. Grain-boundary kinetics: A unified approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3