Synapses without tension fail to fire in an in vitro network of hippocampal neurons

Author:

Joy Md Saddam Hossain1ORCID,Nall Duncan L.2ORCID,Emon Bashar1,Lee Ki Yun1ORCID,Barishman Alexandra3ORCID,Ahmed Movviz4,Rahman Saeedur1,Selvin Paul R.2ORCID,Saif M. Taher A.1ORCID

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801

2. Department of Physics and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801

3. Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801

4. Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801

Abstract

Neurons in the brain communicate with each other at their synapses. It has long been understood that this communication occurs through biochemical processes. Here, we reveal that mechanical tension in neurons is essential for communication. Using in vitro rat hippocampal neurons, we find that 1) neurons become tout/tensed after forming synapses resulting in a contractile neural network, and 2) without this contractility, neurons fail to fire. To measure time evolution of network contractility in 3D (not 2D) extracellular matrix, we developed an ultrasensitive force sensor with 1 nN resolution. We employed Multi-Electrode Array and iGluSnFR, a glutamate sensor, to quantify neuronal firing at the network and at the single synapse scale, respectively. When neuron contractility is relaxed, both techniques show significantly reduced firing. Firing resumes when contractility is restored. This finding highlights the essential contribution of neural contractility in fundamental brain functions and has implications for our understanding of neural physiology.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tensed axons are on fire;Proceedings of the National Academy of Sciences;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3