Reduced stress propagation leads to increased mechanical failure resistance in auxetic materials

Author:

Fielding Suzanne M.1

Affiliation:

1. Department of Physics, Science Laboratories, Durham University, Durham DH1 3LE, United Kingdom

Abstract

Materials with a negative Poisson ratio have the counterintuitive property of expanding laterally when they are stretched longitudinally. They are accordingly termed auxetic, from the Greek auxesis meaning to increase. Experimental studies have demonstrated auxetic materials to have superior material properties, compared with conventional ones. These include synclastic curvature, increased acoustic absorption, increased resilience to material fatigue, and increased resistance to mechanical failure. Until now, the latter observations have remained poorly understood theoretically. With this motivation, the contributions of this work are twofold. First, we elucidate analytically the way in which stress propagates spatially across a material following a localized plastic failure event, finding a significantly reduced stress propagation in auxetic materials compared with conventional ones. In this way, a plastic failure event occurring in one part of a material has a reduced tendency to trigger knock-on plastic events in neighboring regions. Second, via the numerical simulation of a lattice elastoplastic model, we demonstrate a key consequence of this reduced stress propagation to be an increased resistance to mechanical failure. This is seen not only via an increase in the externally measured yield strain, but also via a decreased tendency for plastic damage to percolate internally across a sample in catastrophic system-spanning clusters.

Publisher

Proceedings of the National Academy of Sciences

Reference63 articles.

1. Foam Structures with a Negative Poisson's Ratio

2. Molecular network design

3. Auxetic polymers: a new range of materials

4. Novel honeycombs with auxetic behaviour

5. The mechanics of two-dimensional cellular materials;Gibson L. J.;Proc. R. Soc. London A, Math. Phys. Sci.,1982

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3