A dopamine mechanism for reward maximization

Author:

Schultz Wolfram1ORCID

Affiliation:

1. Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom

Abstract

Individual survival and evolutionary selection require biological organisms to maximize reward. Economic choice theories define the necessary and sufficient conditions, and neuronal signals of decision variables provide mechanistic explanations. Reinforcement learning (RL) formalisms use predictions, actions, and policies to maximize reward. Midbrain dopamine neurons code reward prediction errors (RPE) of subjective reward value suitable for RL. Electrical and optogenetic self-stimulation experiments demonstrate that monkeys and rodents repeat behaviors that result in dopamine excitation. Dopamine excitations reflect positive RPEs that increase reward predictions via RL; against increasing predictions, obtaining similar dopamine RPE signals again requires better rewards than before. The positive RPEs drive predictions higher again and thus advance a recursive reward-RPE-prediction iteration toward better and better rewards. Agents also avoid dopamine inhibitions that lower reward prediction via RL, which allows smaller rewards than before to elicit positive dopamine RPE signals and resume the iteration toward better rewards. In this way, dopamine RPE signals serve a causal mechanism that attracts agents via RL to the best rewards. The mechanism improves daily life and benefits evolutionary selection but may also induce restlessness and greed.

Funder

Wellcome Trust

Publisher

Proceedings of the National Academy of Sciences

Reference97 articles.

1. G. A. Parker, J. Maynard Smith, Evolution and the Theory of Games (Cambridge University Press, 1982).

2. J. W. Stephens, J. R. Krebs, Foraging Theory (Princeton University Press, Princeton NJ, 1986).

3. Optimality theory in evolutionary biology

4. J. von Neumann, O. Morgenstern, The Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).

5. Prospect Theory: An Analysis of Decision under Risk

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3