Minimizing the impacts of the ammonia economy on the nitrogen cycle and climate

Author:

Bertagni Matteo B.12ORCID,Socolow Robert H.3,Martirez John Mark P.4,Carter Emily A.345ORCID,Greig Chris5ORCID,Ju Yiguang3,Lieuwen Tim6,Mueller Michael E.3ORCID,Sundaresan Sankaran7ORCID,Wang Rui2,Zondlo Mark A.2,Porporato Amilcare12ORCID

Affiliation:

1. High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544

2. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544

3. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544

4. Applied Materials and Sustainability Sciences, Princeton Plasma Physics Laboratory, Princeton, NJ 08540

5. Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544

6. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150

7. Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544

Abstract

Ammonia (NH 3 ) is an attractive low-carbon fuel and hydrogen carrier. However, losses and inefficiencies across the value chain could result in reactive nitrogen emissions (NH 3 , NO x , and N 2 O), negatively impacting air quality, the environment, human health, and climate. A relatively robust ammonia economy (30 EJ/y) could perturb the global nitrogen cycle by up to 65 Mt/y with a 5% nitrogen loss rate, equivalent to 50% of the current global perturbation caused by fertilizers. Moreover, the emission rate of nitrous oxide (N 2 O), a potent greenhouse gas and ozone-depleting molecule, determines whether ammonia combustion has a greenhouse footprint comparable to renewable energy sources or higher than coal (100 to 1,400 gCO 2 e/kWh). The success of the ammonia economy hence hinges on adopting optimal practices and technologies that minimize reactive nitrogen emissions. We discuss how this constraint should be included in the ongoing broad engineering research to reduce environmental concerns and prevent the lock-in of high-leakage practices.

Funder

U.S. Department of Energy

National Science Foundation

BP

Blanche Moore Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference78 articles.

1. IEA. Global Hydrogen Review 2021 – Analysis. https://www.iea.org/reports/global-hydrogen-review-2021 (International Energy Agency 2021).

2. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality;Wang D.;Atmos. Chem. Phys.,2013

3. IEA. Hydrogen Projects Database - Data product. https://www.iea.org/data-and-statistics/data-product/hydrogen-projects-database (IEA 2021).

4. IRENA. Global Hydrogen Trade to Meet the 1.5 °C Climate Goal: Green Hydrogen Cost and Potential. https://www.irena.org/publications/2022/May/Global-hydrogen-trade-Cost (International Renewable Energy Agency 2022).

5. Ammonia as green fuel in internal combustion engines: State-of-the-art and future perspectives;Tornatore C.;Front. Mech. Eng.,2022

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3