Validating model-based Bayesian integration using prior–cost metamers

Author:

Sohn HansemORCID,Jazayeri MehrdadORCID

Abstract

There are two competing views on how humans make decisions under uncertainty. Bayesian decision theory posits that humans optimize their behavior by establishing and integrating internal models of past sensory experiences (priors) and decision outcomes (cost functions). An alternative hypothesis posits that decisions are optimized through trial and error without explicit internal models for priors and cost functions. To distinguish between these possibilities, we introduce a paradigm that probes the sensitivity of humans to transitions between prior–cost pairs that demand the same optimal policy (metamers) but distinct internal models. We demonstrate the utility of our approach in two experiments that were classically explained by Bayesian theory. Our approach validates the Bayesian learning strategy in an interval timing task but not in a visuomotor rotation task. More generally, our work provides a domain-general approach for testing the circumstances under which humans explicitly implement model-based Bayesian computations.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference85 articles.

1. J. O. Berger , Statistical Decision Theory and Bayesian Analysis (Springer Science & Business Media, 2013).

2. Bayesian decision theory in sensorimotor control

3. T. M. H. Dijkstra , B. de Vries , T. M. Heskes , O. R. Zoeter , A Bayesian Decision-Theoretic Framework for Psychophysics (International Society for Bayesian Analysis, 2006).

4. A. L. Yuille , H. H. Bulthoff , “Bayesian decision theory and psychophysics” in Perception as Bayesian Inference, D. C. Knill , W. Richards , Eds. (Cambridge University Press, 1996), pp. 123–162.

5. Measurement and modeling of depth cue combination: in defense of weak fusion

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3