Abstract
Ecological theory predicts that species interactions embedded in multitrophic networks shape the opportunities for species to persist. However, the lack of experimental support of this prediction has limited our understanding of how species interactions occurring within and across trophic levels simultaneously regulate the maintenance of biodiversity. Here, we integrate a mathematical approach and detailed experiments in plant–pollinator communities to demonstrate the need to jointly account for species interactions within and across trophic levels when estimating the ability of species to persist. Within the plant trophic level, we show that the persistence probability of plant species increases when introducing the effects of plant–pollinator interactions. Across trophic levels, we show that the persistence probabilities of both plants and pollinators exhibit idiosyncratic changes when experimentally manipulating the multitrophic structure. Importantly, these idiosyncratic effects are not recovered by traditional simulations. Our work provides tractable experimental and theoretical platforms upon which it is possible to investigate the multitrophic factors affecting species persistence in ecological communities.
Funder
Ministerio de Economía y Competitividad
National Science Foundation
Swiss National Science Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献