Drought stress and hurricane defoliation influence mountain clouds and moisture recycling in a tropical forest

Author:

Scholl Martha A.ORCID,Bassiouni MaoyaORCID,Torres-Sánchez Angel J.

Abstract

Mountain ranges generate clouds, precipitation, and perennial streamflow for water supplies, but the role of forest cover in mountain hydrometeorology and cloud formation is not well understood. In the Luquillo Experimental Forest of Puerto Rico, mountains are immersed in clouds nightly, providing a steady precipitation source to support the tropical forest ecosystems and human uses. A severe drought in 2015 and the removal of forest canopy (defoliation) by Hurricane Maria in 2017 created natural experiments to examine interactions between the living forest and hydroclimatic processes. These unprecedented land-based observations over 4.5 y revealed that the orographic cloud system was highly responsive to local land-surface moisture and energy balances moderated by the forest. Cloud layer thickness and immersion frequency on the mountain slope correlated with antecedent rainfall, linking recycled terrestrial moisture to the formation of mountain clouds; and cloud-base altitude rose during drought stress and posthurricane defoliation. Changes in diurnal cycles of temperature and vapor-pressure deficit and an increase in sensible versus latent heat flux quantified local meteorological response to forest disturbances. Temperature and water vapor anomalies along the mountain slope persisted for at least 12 mo posthurricane, showing that understory recovery did not replace intact forest canopy function. In many similar settings around the world, prolonged drought, increasing temperatures, and deforestation could affect orographic cloud precipitation and the humans and ecosystems that depend on it.

Funder

DOI | U.S. Geological Survey

NSF | Directorate for Geosciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3