Author:
Zhang Jiawei,Wilson Joshua,Auton Gregory,Wang Yiming,Xu Mingsheng,Xin Qian,Song Aimin
Abstract
Despite being a fundamental electronic component for over 70 years, it is still possible to develop different transistor designs, including the addition of a diode-like Schottky source electrode to thin-film transistors. The discovery of a dependence of the source barrier height on the semiconductor thickness and derivation of an analytical theory allow us to propose a design rule to achieve extremely high voltage gain, one of the most important figures of merit for a transistor. Using an oxide semiconductor, an intrinsic gain of 29,000 was obtained, which is orders of magnitude higher than a conventional Si transistor. These same devices demonstrate almost total immunity to negative bias illumination temperature stress, the foremost bottleneck to using oxide semiconductors in major applications, such as display drivers. Furthermore, devices fabricated with channel lengths down to 360 nm display no obvious short-channel effects, another critical factor for high-density integrated circuits and display applications. Finally, although the channel material of conventional transistors must be a semiconductor, by demonstrating a high-performance transistor with a semimetal-like indium tin oxide channel, the range and versatility of materials have been significantly broadened.
Funder
RCUK | Engineering and Physical Sciences Research Council
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
Proceedings of the National Academy of Sciences
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献