Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics

Author:

Cheng TaoORCID,Fortunelli Alessandro,Goddard William A.ORCID

Abstract

Electrocatalysis provides a powerful means to selectively transform molecules, but a serious impediment in making rapid progress is the lack of a molecular-based understanding of the reactive mechanisms or intermediates at the electrode–electrolyte interface (EEI). Recent experimental techniques have been developed for operando identification of reaction intermediates using surface infrared (IR) and Raman spectroscopy. However, large noises in the experimental spectrum pose great challenges in resolving the atomistic structures of reactive intermediates. To provide an interpretation of these experimental studies and target for additional studies, we report the results from quantum mechanics molecular dynamics (QM-MD) with explicit consideration of solvent, electrode–electrolyte interface, and applied potential at 298 K, which conceptually resemble the operando experimental condition, leading to a prototype of operando QM-MD (o-QM-MD). With o-QM-MD, we characterize 22 possible reactive intermediates in carbon dioxide reduction reactions (CO2RRs). Furthermore, we report the vibrational density of states (v-DoSs) of these intermediates from two-phase thermodynamic (2PT) analysis. Accordingly, we identify important intermediates such as chemisorbed CO2 (b-CO2), *HOC-COH, *C-CH, and *C-COH in our o-QM-MD likely to explain the experimental spectrum. Indeed, we assign the experimental peak at 1,191 cm−1 to the mode of C-O stretch in *HOC-COH predicted at 1,189 cm−1 and the experimental peak at 1,584 cm−1 to the mode of C-C stretch in *C-COD predicted at 1,581 cm−1. Interestingly, we find that surface ketene (*C=C=O), arising from *HOC-COH dehydration, also shows signals at around 1,584 cm−1, which indicates a nonelectrochemical pathway of hydrocarbon formation at low overpotential and high pH conditions.

Funder

DOE | OE | Research and Development

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3