The 3 × 120° rotary mechanism ofParacoccus denitrificansF1-ATPase is different from that of the bacterial and mitochondrial F1-ATPases

Author:

Zarco-Zavala MarielORCID,Watanabe Ryo,McMillan Duncan G. G.ORCID,Suzuki Toshiharu,Ueno HiroshiORCID,Mendoza-Hoffmann Francisco,García-Trejo José J.,Noji HiroyukiORCID

Abstract

The rotation ofParacoccus denitrificansF1-ATPase (PdF1) was studied using single-molecule microscopy. At all concentrations of adenosine triphosphate (ATP) or a slowly hydrolyzable ATP analog (ATPγS), above or belowKm, PdF1showed three dwells per turn, each separated by 120°. Analysis of dwell time between steps showed that PdF1executes binding, hydrolysis, and probably product release at the same dwell. The comparison of ATP binding and catalytic pauses in single PdF1molecules suggested that PdF1executes both elementary events at the same rotary position. This point was confirmed in an inhibition experiment with a nonhydrolyzable ATP analog (AMP-PNP). Rotation assays in the presence of adenosine diphosphate (ADP) or inorganic phosphate at physiological concentrations did not reveal any obvious substeps. Although the possibility of the existence of substeps remains, all of the datasets show that PdF1is principally a three-stepping motor similar to bacterial vacuolar (V1)-ATPase fromThermus thermophilus. This contrasts with all other known F1-ATPases that show six or nine dwells per turn, conducting ATP binding and hydrolysis at different dwells. Pauses by persistent Mg-ADP inhibition or the inhibitory ζ-subunit were also found at the same angular position of the rotation dwell, supporting the simplified chemomechanical scheme of PdF1. Comprehensive analysis of rotary catalysis of F1from different species, including PdF1, suggests a clear trend in the correlation between the numbers of rotary steps of F1and Fodomains of F-ATP synthase. F1motors with more distinctive steps are coupled with proton-conducting Forings with fewer proteolipid subunits, giving insight into the design principle the F1Foof ATP synthase.

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

MEXT | Japan Society for the Promotion of Science

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3