Abstract
Whether a pathogen entering a new host species results in a single infection or in onward transmission, and potentially an outbreak, depends upon the progression of infection in the index case. Although index infections are rarely observable in nature, experimental inoculations of pathogens into novel host species provide a rich and largely unexploited data source for meta-analyses to identify the host and pathogen determinants of variability in infection outcomes. We analyzed the progressions of 514 experimental cross-species inoculations of rabies virus, a widespread zoonosis which in nature exhibits both dead-end infections and varying levels of sustained transmission in novel hosts. Inoculations originating from bats rather than carnivores, and from warmer- to cooler-bodied species caused infections with shorter incubation periods that were associated with diminished virus excretion. Inoculations between distantly related hosts tended to result in shorter clinical disease periods, which are also expected to impede onward transmission. All effects were modulated by infection dose. Taken together, these results suggest that as host species become more dissimilar, increased virulence might act as a limiting factor preventing onward transmission. These results can explain observed constraints on rabies virus host shifts, describe a previously unrecognized role of host body temperature, and provide a potential explanation for host shifts being less likely between genetically distant species. More generally, our study highlights meta-analyses of experimental infections as a tractable approach to quantify the complex interactions between virus, reservoir, and novel host that shape the outcome of cross-species transmission.
Funder
RCUK | Medical Research Council
Wellcome
Publisher
Proceedings of the National Academy of Sciences
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献