Author:
Kita Yuto,Tsuruhara Shuhei,Kubo Hiroshi,Yamashita Koji,Seikoba Yu,Idogawa Shinnosuke,Sawahata Hirohito,Yamagiwa Shota,Leong Xian Long Angela,Numano Rika,Koida Kowa,Kawano Takeshi
Abstract
Microscale needle-electrode devices offer neuronal signal recording capability in brain tissue; however, using needles of smaller geometry to minimize tissue damage causes degradation of electrical properties, including high electrical impedance and low signal-to-noise ratio (SNR) recording. We overcome these limitations using a device assembly technique that uses a single needle-topped amplifier package, called STACK, within a device of ∼1 × 1 mm2. Based on silicon (Si) growth technology, a <3-µm-tip-diameter, 400-µm-length needle electrode was fabricated on a Si block as the module. The high electrical impedance characteristics of the needle electrode were improved by stacking it on the other module of the amplifier. The STACK device exhibited a voltage gain of >0.98 (−0.175 dB), enabling recording of the local field potential and action potentials from the mouse brain in vivo with an improved SNR of 6.2. Additionally, the device allowed us to use a Bluetooth module to demonstrate wireless recording of these neuronal signals; the chronic experiment was also conducted using STACK-implanted mice.
Funder
MEXT | Japan Society for the Promotion of Science
New Energy and Industrial Technology Development Organization
Takeda Science Foundation
Toyota Physical & Chemical Research Institute Scholars
Publisher
Proceedings of the National Academy of Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献