A release from developmental bias accelerates morphological diversification in butterfly eyespots

Author:

Brattström OskarORCID,Aduse-Poku KwakuORCID,van Bergen ErikORCID,French Vernon,Brakefield Paul M.ORCID

Abstract

Development can bias the independent evolution of traits sharing ontogenetic pathways, making certain evolutionary changes less likely. The eyespots commonly found on butterfly wings each have concentric rings of differing colors, and these serially repeated pattern elements have been a focus for evo–devo research. In the butterfly family Nymphalidae, eyespots have been shown to function in startling or deflecting predators and to be involved in sexual selection. Previous work on a model species of Mycalesina butterfly,Bicyclus anynana, has provided insights into the developmental control of the size and color composition of individual eyespots. Experimental evolution has also shown that the relative size of a pair of eyespots on the same wing surface is highly flexible, whereas they are resistant to diverging in color composition, presumably due to the underlying shared developmental process. This fixed color composition has been considered as a prime example of developmental bias with significant consequences for wing pattern evolution. Here, we test this proposal by surveying eyespots across the whole subtribe of Mycalesina butterflies and demonstrate that developmental bias shapes evolutionary diversification except in the genusHeteropsiswhich has gained independent control of eyespot color composition. Experimental manipulations of pupal wings reveal that the bias has been released through a novel regional response of the wing tissue to a conserved patterning signal. Our study demonstrates that development can bias the evolutionary independence of traits, but it also shows how bias can be released through developmental innovations, thus, allowing rapid morphological change, facilitating evolutionary diversification.

Funder

John Templeton Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3