Supervised learning through physical changes in a mechanical system

Author:

Stern MenachemORCID,Arinze Chukwunonso,Perez Leron,Palmer Stephanie E.ORCID,Murugan Arvind

Abstract

Mechanical metamaterials are usually designed to show desired responses to prescribed forces. In some applications, the desired force–response relationship is hard to specify exactly, but examples of forces and desired responses are easily available. Here, we propose a framework for supervised learning in thin, creased sheets that learn the desired force–response behavior by physically experiencing training examples and then, crucially, respond correctly (generalize) to previously unseen test forces. During training, we fold the sheet using training forces, prompting local crease stiffnesses to change in proportion to their experienced strain. We find that this learning process reshapes nonlinearities inherent in folding a sheet so as to show the correct response for previously unseen test forces. We show the relationship between training error, test error, and sheet size (model complexity) in learning sheets and compare them to counterparts in machine-learning algorithms. Our framework shows how the rugged energy landscape of disordered mechanical materials can be sculpted to show desired force–response behaviors by a local physical learning process.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference47 articles.

1. Topological mechanics of gyroscopic metamaterials

2. Flexible mechanical metamaterials;Bertoldi;Nat. Rev. Mater.,2017

3. Designing allostery-inspired response in mechanical networks

4. D. Norman , The Design of Everyday Things (Basic Books, New York, NY, revised and expanded ed., 2013).

5. Conformational control of mechanical networks;Kim;Nat. Phys.,2019

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3