Molecular taxonomy of human ocular outflow tissues defined by single-cell transcriptomics

Author:

Patel GaurangORCID,Fury Wen,Yang Hua,Gomez-Caraballo Maria,Bai Yu,Yang Tao,Adler Christina,Wei Yi,Ni Min,Schmitt HeatherORCID,Hu Ying,Yancopoulos George,Stamer W. Daniel,Romano CarmeloORCID

Abstract

The conventional outflow pathway is a complex tissue responsible for maintaining intraocular pressure (IOP) homeostasis. The coordinated effort of multiple cells with differing responsibilities ensures healthy outflow function and IOP maintenance. Dysfunction of one or more resident cell types results in ocular hypertension and risk for glaucoma, a leading cause of blindness. In this study, single-cell RNA sequencing was performed to generate a comprehensive cell atlas of human conventional outflow tissues. We obtained expression profiles of 17,757 genes from 8,758 cells from eight eyes of human donors representing the outflow cell transcriptome. Upon clustering analysis, 12 distinct cell types were identified, and region-specific expression of candidate genes was mapped in human tissues. Significantly, we identified two distinct expression patterns (myofibroblast- and fibroblast-like) from cells located in the trabecular meshwork (TM), the primary structural component of the conventional outflow pathway. We also located Schwann cell and macrophage signatures in the TM. The second primary component structure, Schlemm’s canal, displayed a unique combination of lymphatic/blood vascular gene expression. Other expression clusters corresponded to cells from neighboring tissues, predominantly in the ciliary muscle/scleral spur, which together correspond to the uveoscleral outflow pathway. Importantly, the utility of our atlas was demonstrated by mapping glaucoma-relevant genes to outflow cell clusters. Our study provides a comprehensive molecular and cellular classification of conventional and unconventional outflow pathway structures responsible for IOP homeostasis.

Funder

Regeneron Pharmaceuticals

Research to Prevent Blindness Foundation

HHS | NIH | National Eye Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3