Bumblebees perceive the spatial layout of their environment in relation to their body size and form to minimize inflight collisions

Author:

Ravi SridharORCID,Siesenop Tim,Bertrand OlivierORCID,Li LiangORCID,Doussot Charlotte,Warren William H.ORCID,Combes Stacey A.ORCID,Egelhaaf MartinORCID

Abstract

Animals that move through complex habitats must frequently contend with obstacles in their path. Humans and other highly cognitive vertebrates avoid collisions by perceiving the relationship between the layout of their surroundings and the properties of their own body profile and action capacity. It is unknown whether insects, which have much smaller brains, possess such abilities. We used bumblebees, which vary widely in body size and regularly forage in dense vegetation, to investigate whether flying insects consider their own size when interacting with their surroundings. Bumblebees trained to fly in a tunnel were sporadically presented with an obstructing wall containing a gap that varied in width. Bees successfully flew through narrow gaps, even those that were much smaller than their wingspans, by first performing lateral scanning (side-to-side flights) to visually assess the aperture. Bees then reoriented their in-flight posture (i.e., yaw or heading angle) while passing through, minimizing their projected frontal width and mitigating collisions; in extreme cases, bees flew entirely sideways through the gap. Both the time that bees spent scanning during their approach and the extent to which they reoriented themselves to pass through the gap were determined not by the absolute size of the gap, but by the size of the gap relative to each bee’s own wingspan. Our findings suggest that, similar to humans and other vertebrates, flying bumblebees perceive the affordance of their surroundings relative their body size and form to navigate safely through complex environments.

Funder

Alexander von Humboldt-Stiftung

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference39 articles.

1. VISUALLY CONTROLLED LOCOMOTION AND VISUAL ORIENTATION IN ANIMALS*

2. J. J. Gibson , “The theory of affordance” in Perceiving Acting and Knowing, R. Shaw , J. Bransford , Eds. (Lawrence Erlbaum, 1977), pp. 127–142.

3. Perceiving affordances: Visual guidance of stair climbing.

4. Arboreal Clambering and the Evolution of Self-Conception

5. Elephants know when their bodies are obstacles to success in a novel transfer task;Dale;Sci. Rep.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3