Mechanistic transmission modeling of COVID-19 on the Diamond Princess cruise ship demonstrates the importance of aerosol transmission

Author:

Azimi ParhamORCID,Keshavarz ZahraORCID,Cedeno Laurent Jose GuillermoORCID,Stephens BrentORCID,Allen Joseph G.

Abstract

Several lines of existing evidence support the possibility of airborne transmission of coronavirus disease 2019 (COVID-19). However, quantitative information on the relative importance of transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains limited. To evaluate the relative importance of multiple transmission routes for SARS-CoV-2, we developed a modeling framework and leveraged detailed information available from the Diamond Princess cruise ship outbreak that occurred in early 2020. We modeled 21,600 scenarios to generate a matrix of solutions across a full range of assumptions for eight unknown or uncertain epidemic and mechanistic transmission factors. A total of 132 model iterations met acceptability criteria (R2 > 0.95 for modeled vs. reported cumulative daily cases and R2 > 0 for daily cases). Analyzing only these successful model iterations quantifies the likely contributions of each defined mode of transmission. Mean estimates of the contributions of short-range, long-range, and fomite transmission modes to infected cases across the entire simulation period were 35%, 35%, and 30%, respectively. Mean estimates of the contributions of larger respiratory droplets and smaller respiratory aerosols were 41% and 59%, respectively. Our results demonstrate that aerosol inhalation was likely the dominant contributor to COVID-19 transmission among the passengers, even considering a conservative assumption of high ventilation rates and no air recirculation conditions for the cruise ship. Moreover, close-range and long-range transmission likely contributed similarly to disease progression aboard the ship, with fomite transmission playing a smaller role. The passenger quarantine also affected the importance of each mode, demonstrating the impacts of the interventions.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference53 articles.

1. Is the coronavirus airborne? Experts can’t agree

2. WHO , Modes of transmission of virus causing COVID-19: Implications for IPC precaution recommendations. Scientific Brief (2020). https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations. Accessed 22 July 2020.

3. CDC , How COVID-19 spreads (2020). https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html. Accessed 25 November 2020.

4. CDC , Scientific brief: SARS-CoV-2 and potential airborne transmission. Coronavirus disease 2019 (COVID-19) (2020). https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-sars-cov-2.html. Accessed 25 November 2020.

5. Airborne transmission of SARS-CoV-2: The world should face the reality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3