The diversity bonus in pooling local knowledge about complex problems

Author:

Aminpour PayamORCID,Gray Steven A.,Singer Alison,Scyphers Steven B.,Jetter Antonie J.,Jordan Rebecca,Murphy Robert,Grabowski Jonathan H.

Abstract

Recently, theoreticians have hypothesized that diverse groups, as opposed to groups that are homogeneous, may have relative merits [S. E. Page, The Diversity Bonus (2019)]—all of which lead to more success in solving complex problems. As such, understanding complex, intertwined environmental and social issues may benefit from the integration of diverse types of local expertise. However, efforts to support this hypothesis have been frequently made through laboratory-based or computational experiments, and it is unclear whether these discoveries generalize to real-world complexities. To bridge this divide, we combine an Internet-based knowledge elicitation technique with theoretical principles of collective intelligence to design an experiment with local stakeholders. Using a case of striped bass fisheries in Massachusetts, we pool the local knowledge of resource stakeholders represented by graphical cognitive maps to produce a causal model of complex social-ecological interdependencies associated with fisheries ecosystems. Blinded reviews from a scientific expert panel revealed that the models of diverse groups outranked those from homogeneous groups. Evaluation via stochastic network analysis also indicated that a diverse group more adequately modeled complex feedbacks and interdependencies than homogeneous groups. We then used our data to run Monte Carlo experiments wherein the distributions of stakeholder-driven cognitive maps were randomly reproduced and virtual groups were generated. Random experiments also predicted that knowledge diversity improves group success, which was measured by benchmarking group models against an ecosystem-based fishery management model. We also highlight that diversity must be moderated through a proper aggregation process, leading to more complex yet parsimonious models.

Funder

DOC | National Oceanic and Atmospheric Administration

DOC | NOAA | Climate Program Office

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3