Abstract
Decision-making and representations of arousal are intimately linked. Behavioral investigations have classically shown that either too little or too much bodily arousal is detrimental to decision-making, indicating that there is an inverted “U” relationship between bodily arousal and performance. How these processes interact at the level of single neurons as well as the neural circuits involved are unclear. Here we recorded neural activity from orbitofrontal cortex (OFC) and dorsal anterior cingulate cortex (dACC) of macaque monkeys while they made reward-guided decisions. Heart rate (HR) was also recorded and used as a proxy for bodily arousal. Recordings were made both before and after subjects received excitotoxic lesions of the bilateral amygdala. In intact monkeys, higher HR facilitated reaction times (RTs). Concurrently, a set of neurons in OFC and dACC selectively encoded trial-by-trial variations in HR independent of reward value. After amygdala lesions, HR increased, and the relationship between HR and RTs was altered. Concurrent with this change, there was an increase in the proportion of dACC neurons encoding HR. Applying a population-coding analysis, we show that after bilateral amygdala lesions, the balance of encoding in dACC is skewed away from signaling either reward value or choice direction toward HR coding around the time that choices are made. Taken together, the present results provide insight into how bodily arousal and decision-making are signaled in frontal cortex.
Funder
HHS | NIH | National Institute of Mental Health
Takeda Science Foundation
Brain and Behavior Research Foundation
Publisher
Proceedings of the National Academy of Sciences
Reference44 articles.
1. The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis
2. Do pretty women inspire men to discount the future?
3. Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans;Mobbs;Curr. Opin. Behav. Sci.,2015
4. M. S. Fanselow , L. S. Lester , “A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior” in Evolution and Learning, R. C. Bolles , M. D. Beecher , Eds. (Lawrence Erlbaum Associates, Hillsdale, NJ, 1988), pp. 185–212.
5. From Threat to Fear: The Neural Organization of Defensive Fear Systems in Humans
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献